
Page 1

Integration Strategies for Computational
Science & Engineering Software

Roscoe A. Bartlett
http://www.cs.sandia.gov/~rabartl/

Department of Optimization & Uncertainty Estimation
Trilinos Software Engineering Technologies and Integration Lead

Sandia National Laboratories

Second International Workshop on Software
Engineering for Computational Science and

Engineering
May 23, 2009

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

2009-0655 C

Page 2

Software Integration in the CS&E Environment

• Need to integrate a large amount of CS&E software:
– Meshing
– Discretizations
– Solvers
– Adaptivity
– Analysis capabilities
– Visualization
– ...

• Each CS&E discipline is highly specialized and requires PhD-level expertise

• The set of algorithms and software is too large for any single organization to
produce

• Set of software is too large to be developed under a single blanket of Full
Continuous Integration (CI)

=> Software Engineering and Software Integration are key bottlenecks for
CS&E to have the fullest impact!

Page 3

CS&E Environment at Sandia National Labs for Trilinos

• Sophisticated CS&E applications
– Discretized PDEs (SIERRA, Alegra, Aleph, Charon)
– Circuit network models (Xyce)
– Other types of calculations (Titian/VTK, Tramonto)

• (Massively) parallel MPI (Gordon Bell Winners)
• Almost entirely developed by non-software people
• Wide range of research to production (i.e. from Aleph to SIERRA)

SIERRA (APP)

Largest and most
complex

Alegra (APP) Charon
(APP)

Xyce
(APP)

Tramonto
(APP)

Titan/VTK
(APP)

...Aleph
(APP)

Trilinos (TPL)

TPL: Third Party Lib
• Provides

functionality to
multiple APPs

• The “Supplier” to
the APP

APP: Application
• Delivers end user

functionality
• The “Customer” of

the TPL

Page 4

Standard Software Integration Approaches

APP (Customer)
Developers

TPL (Supplier)
Developers

Helps to create
and maintain

develops

• Helps to create
• Runs as a regression

test suite

develops

APP TPL

• Continuous Integration (CI)
– Code is expected to build and the tests are expected to run
– Maintained through synchronous or asynchronous CI
– Requires high levels of cooperation and communication
– Requires code to (re)build fast and tests to run fast

• Customer/Supplier Relationships
– Combined code too large to build under single CI system
– Organizations can not cooperate close enough
– Protect APP for future TPL updates through development of Acceptance Test Suite
– May not work as well for may CS&E codes
– Not as well suited for closer collaborations

APP/TPL
Acceptance Test

Suite

Page 5

Challenges to Software Integration in CS&E Environments

• CS&E is a mix of research and production work
– How can you mix research and production software?

• CS&E practitioners have a wide mix of backgrounds in physics, math,
computer science, engineering, etc.
– How to these people communicate together and integrate their technologies?

• CS&E involved very complex, very specialized algorithms
– Requires PhD in area to develop best algorithms/software
– How to integrate very different complex algorithms software?

• Great variability in knowledge and interests in basic software development
knowledge and skills
– How can you produce high quality trusted software with unskilled programmers?

• Close collaboration between different disciplines needed to solve the hard
problems
– How can different practitioners work together through their software?

• CS&E heavily relies on fast floating-point computations
– Output from program varies between platforms and even with different compiler

options!
– How to you keep tests working on different platforms?

• CS&E involves complex nonlinear models
– Examples: ill conditioning, multiple solutions, bifurcations, non-convexities ...

Page 6

Special Challenges with CS&E Software

• CS&E heavily relies on fast floating-point computations
– Output from program varies between platforms and even with different compiler

options!
– How to you keep tests working on different platforms?

• CS&E involves complex nonlinear models
– Examples: ill conditioning, multiple solutions, bifurcations, non-convexities ...

These issues conspire together to make testing and maintaining CS&E software
on multiple platforms very difficult!

Consequences:
• A new test status: The diffing test!

– Code runs to completion but some error tolerance was exceeded
– Many CS&E practitioners convince themselves that a “diff” is not as bad as a “fail”!

• Changes to a numerical algorithm that improve performance in every measure
can cause numerous tests to ‘diff’ or even ‘fail’!

• Upgrades of a TPL can break an APP even if no real defects have been
introduced!

Page 7

APP + TPL Release with Punctuated TPL Upgrades

TPL Head

APP Head

TPL X release

TPL X+1

branch

APP Y+1 & TPL X+1
release

Testing: APP Dev + TPL X APP Dev
transition
to TPL X+1

Testing:
APP Dev + TPL X+1

• Transition from TPL X to TPL X+1 can be difficult and open ended
• Large batches of changes between integrations
• Greater risk of experiencing real regressions
• Upgrades may need to be completely abandoned in extreme cases
• However, this is satisfactory for many APP+TPL efforts!

TPL X+1 release

Page 8

APP + TPL Release and Dev Daily Integration

APP (SIERRA)
Dev

TPL
(Trilinos)
Release

TPL
(Trilinos)

Dev

N
ew

APP (SIERRA)
Dev Developers

TPL (Trilinos) Dev
Developers

• APP (SIERRA) Dev Developers only build/test against TPL Release
• TPL (Trilinos) Dev Developers work independent from APP
• Keep APP Dev and TPL Dev up to date! => Supported by TPL backward Compatibility!
• Use of staggered releases of TPL and APP
• APP + TPL Dev Developers drive new capabilities
• Difficult for APP to depend too much on TPL
• Does not support tighter levels of integration and collaboration
• APP developers can break “New” a lot when refactoring
• However, this is satisfactory for many APP+TPL efforts!

APP Dev + TPL Dev
Co-Developers

Page 9

TPL X+1

branch

APP + TPL Release and Dev Daily Integration

TPL Head (Dev)

APP Head (Dev)

TPL X release

APP Y+1 & TPL X+1
release

Testing: APP Dev + TPL Dev
Testing: APP Dev + TPL X

Testing:
APP +

Tri Dev
Tri X
Tri X+1

• All changes are tested in small batches
• Low probability of experiencing a regression
• Extra computing resources to test against 2 (3) versions of TPL
• Some difficulty flagging regressions of APP + TPL Dev
• APP developers often break APP + TPL Dev when refactoring
• Difficult for APP to rely on TPL too much
• Hard to verify TPL for APP before APP release
• However, this is satisfactory for many APP+TPL efforts!

TPL X+1 release

Testing: APP Dev + TPL Dev
Testing: APP Dev + TPL X+1

SIERRA + Trilinos Integration!
Charon + Trilinos Integration!
Alegra + Trilinos Integration!
Xyce + Trilinos Integration!

Page 10

APP + TPL Almost Continuous Integration: Principles

• Regular TPL developers only build and run TPL pre-checkin test suite.

• Regular APP developers should only check out code that has already built
and passed their pre-checkin APP test suite.

• Code that builds and passes the pre-checkin test suite is safe to check in.

• Co-development of the APP + TPL needs to be productive and not
discourage frequent checkins (at least to direct collaborators).

• Regular APP developers should be able to easily build and test “New” APP
+ TPL Dev code to avoid breaking it before checkin.

Page 11

APP Owned

TPL Owned

APP + TPL Almost Continuous Integration: Overview

Main APP
VC Repository

(Dev)

APP-owned TPL
VC Repository

(Dev-)

APP Dev
Developers

TPL Dev
Developers

APP Pre-Checkin
Test Suite

APP Regression
Test Suite

TPL Regression
Test Suite

APP Dev
Nightly Testing

APP Dev + TPL Dev-

TPL Dev
Nightly Testing

Main TPL
VC Repository

(Dev)

TPL Pre-Checkin
Test Suite

APP Dev + TPL Dev
Co-Developers

APP Dev + TPL Dev

Page 12

5.b) Check in

APP + TPL Almost Continuous Integration: Co-Development

1.a) Check out

1.b) Check out

1.c) Check out

1.d) Check out (and merge)

3) Build

4.a) Run test suite

1.e) Check out

2.a) Modify & extend

2.b) Modify & extend

2.d) Modify & extend

4.b) Run test suite

2.c) Modify & extend

5.a) Check in

5.c) Check in

5.d) Check in

5.e) Check in

TPL Local
Working Directory

(Dev- and Dev)

APP-owned TPL
VC Repository

(Dev-)

Main APP
VC Repository

(Dev)

APP Pre-Checkin
Test Suite

Main TPL
VC Repository

(Dev)

APP Local
Working Directory

(Dev)

APP Pre-Checkin
Test Suite

Working Directory

TPL Pre-Checkin
Test Suite

TPL Pre-Checkin
Test Suite

Working Directory

• Pre-checkin test suites for APP and TPL are both run before checkin
• Simultaneous checks into APP-owned TPL Dev- and Main TPL Dev VC Repositories!

– Changes in APP-owned TPL VC Dev- Repos get back into Main TPL VC Dev Repos!

Page 13

APP + TPL Almost Continuous Integration: Releases

TPL Head (Dev)

APP Head (Dev)

APP Y+1 & TPL APP Y+1 release

Nightly Testing: APP Dev + TPL Dev (pre-checkin tests only, TPL Dev- checkin)
Nightly Testing: APP Dev + TPL Dev- (complete test suites)
Supported with asynchronous continuous integration testing of APP Dev + TPL Dev

TPL APP Y+1 release

TPL APP Y+1

branch

APP Y+1

bran
ch

• All changes are tested in small batches
• Low probability of experiencing a regression between major releases
• Less computing resources for detailed nightly testing (only one TPL version)
• All tested regressions are flagged in less than 24 hours
• Allows code to flow freely between the APP and TPL
• Supports rapid development of new capabilities from top to bottom
• All code checked out by APP Dev developers has passed pre-checkin build/test
• More complex processes (i.e. requires some tools?)
• APP Dev developers spend more time spent recompiling TPL code
• Recommended for projects requiring high levels of integration & collaboration!

Page 14

Maintenance of APP + TPL Integration

Hard TPL #2
Issues

Hard TPL #1
Issues

APP Dev + TPL Dev Build/Test
or

APP Dev + TPL Dev-/Release Build/Test

TPL #1
Developers

TPL #2
Developers

APP + TPL
Monitors

TPL #1
Representatives

TPL #2
Representatives

All failures

TPL #1
Issues

APP
Representatives

APP Developers

APP
Issues

TPL #2
Issues

• APP + TPL Monitor:
– Member of the APP development team
– Has good familiarity with the TPLs
– Performs first-round triage (APP or TPL?)
– Forwards issues to APP or TPL Reps
– Ultimate responsibility to make sure issues

are resolved
• APP Representative:

– Member of the APP development team
– Second-round triage of APP issues
– Forwards hard APP issues to APP

developers
• TPL Representative:

– Member of the TPL development team
– Has some familiarity with the APPs
– Second-round triage for TPL issues
– Forwards hard TPL issues to TPL

developers
• General principles:

– Roles of authority and accountability
(Ordained by management)

– At least two people serve in each role
– Rotate people in roles

Hard APP
Issues

Page 15

Experience with Integration Approaches with Trilinos at SNL

Charon + Trilinos Integration:
– First implemented APP + TPL Release and Dev Daily Integration in 2007
– Maintained daily integration with little effort
– Supporting more ambitious collaborations and integration efforts
– However, has never gone through a full release process under this model

• Alegra + Trilinos Integration:
– Started APP + TPL Release and Dev Daily Integration in 2008
– Maintained daily integration with little effort on multiple platforms
– Upgrade to Trilinos 9.0 was easy and risk free, less overall effort

• SIERRA + Trilinos Integration:
– Started APP + TPL Release and Dev Daily Integration in mid 2008
– Before daily integration:

• SIERRA 4.9 released against Trilinos 7.0 (a 1.5 year old release)
• Upgrade of SIERRA VOTD to Trilinos 8.0 was a “disaster”

– After daily integration:
• SIERRA 4.10 released against Trilinos 9.0 (2 months old) with no issues
• SIERRA 4.11 released against snapshot branch of Trilinos (2 weeks old)

– Currently having lots of problems with broken code in “New” APP code
– APP + TPL Almost Continuous Integration Process currently being developed!

Page 16

Selecting an Integration Model for CS&E Software

• Each of these different integration models will be appropriate for a particular
APP+TPL situation.

• The particular integration model can be switched during the life-cycles of
the APP and TPL depending on several factors:
– How critical is the TPL functionality currently to the APP?
– Are there alternatives to a particular TPL that can duplicate functionality?
– How actively is the TPL being developed?
– Is it critical for the APP to continue to accept new releases of the TPL?
– How active is the collaboration between APP and TPL developers?
– Is the TPL a fundamental part of the infrastructure of the APP?
– ...

Page 17

Conclusions

• Need to integrate a large amount of CS&E software:
– Meshing
– Discretizations
– Solvers
– Adaptivity
– Analysis capabilities
– Visualization
– ...

• Software Engineering and Software Integration are key bottlenecks for
CS&E to have the fullest impact!

• The CS&E R&D community needs to adopt better Lean/Agile software
engineering methods:
– Need a strategy to inject basic software engineering knowledge into CS&E
– These methods must be adapted to the special properties of CS&E

Page 18

The End

The End

Page 19

Summary of CS&E Software Integration Models

• Nightly building and testing of the development versions of the application
and TPLs:
– results in better production capabilities and better research,
– brings TPL developers and APP developers closer together allowing for a better

exchange of ideas and concerns,
– refocuses TPL developers on customer efforts,
– helps drive continued research-quality TPL development, and
– reduces barriers for new TPL algorithms to have impact on production

applications.
• Integration Models:

– APP + TPL Release with Punctuated TPL Upgrades
• Little to no testing of APP + TPL Dev in between TPL releases

– APP + TPL Release and Dev Daily Integration
• Daily Integration testing done for both APP + TPL Release and Dev
• Staggered releases of TPL and APP

– APP + TPL Almost Continuous Integration
• APP Dev + TPL Dev developers update both APP-owned and main TPL repositories
• Nightly testing of APP Dev + TPL Dev automatically updates APP-owned TPL Dev- VC

Repository
• Releases best handled as combined releases of APP and TPL
• TPL Dev- checkins can be dialed back approaching TPL Release and Dev Integration!

